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Abstract 

Background:  Overcoming drug resistance is critical for increasing the survival rate of prostate cancer (PCa). Doc‑
etaxel is the first cytotoxic chemotherapeutical approved for treatment of PCa. However, 99% of PCa patients will 
develop resistance to docetaxel within 3 years. Understanding how resistance arises is important to increasing PCa 
survival.

Methods:  In this study, we modeled docetaxel resistance using two PCa cell lines: DU145 and PC3. Using the Pass‑
ing Attributes between Networks for Data Assimilation (PANDA) method to model transcription factor (TF) activity 
networks in both sensitive and resistant variants of the two cell lines. We identified edges and nodes shared by both 
PCa cell lines that composed a shared TF network that modeled changes which occur during acquisition of docetaxel 
resistance in PCa. We subjected the shared TF network to connectivity map analysis (CMAP) to identify potential drugs 
that could disrupt the resistant networks. We validated the candidate drug in combination with docetaxel to treat 
docetaxel-resistant PCa in both in vitro and in vivo models.

Results:  In the final shared TF network, 10 TF nodes were identified as the main nodes for the development of 
docetaxel resistance. CMAP analysis of the shared TF network identified trichostatin A (TSA) as a candidate adjuvant to 
reverse docetaxel resistance. In cell lines, the addition of TSA to docetaxel enhanced cytotoxicity of docetaxel resistant 
PCa cells with an associated reduction of the IC50 of docetaxel on the resistant cells. In the PCa mouse model, combi‑
nation of TSA and docetaxel reduced tumor growth and final weight greater than either drug alone or vehicle.

Conclusions:  We identified a shared TF activity network that drives docetaxel resistance in PCa. We also demon‑
strated a novel combination therapy to overcome this resistance. This study highlights the usage of novel applica‑
tion of single cell RNA-sequencing and subsequent network analyses that can reveal novel insights which have the 
potential to improve clinical outcomes.
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Background
Prostate cancer (PCa) is the second leading cause of can-
cer-related deaths in men in the United States [1]. While 
the first line of treatment for advanced PCa is androgen 
deprivation therapy, the majority of patients develop 
castrate-resistant PCa (CRPC) [2] which leads to use of 
chemotherapy. Docetaxel, a taxane, was one of the first 
cytotoxic therapies approved for CRPC in the United 
States [3]. It operates through the stabilization of micro-
tubules and inhibition of Bcl-2 expression [4–6]. How-
ever, the survival benefits of docetaxel are limited with 
resistance developing in nearly 99% of patients within 
3 years [7]. Understanding how this resistance arises is 
critical to identify strategies to overcome resistance and 
increase the survival of PCa patients.

While previous studies to delineate the mechanisms of 
docetaxel resistance in PCa have identified putative tar-
gets, these studies focused on a small number of gene 
expression changes that occur during drug resistance [8, 
9]. In a previous study, we used single cell RNA-sequenc-
ing of docetaxel-resistant PCa cells to identify putative 
candidates of docetaxel resistance [10]. However, a limi-
tation of that study was the lack of integrating the data 
with gene pathways and transcriptional activators in a 
more holistic fashion. An integrative and systems-level 
approach that, in addition to transcription expression, 
incorporates protein interactions and transcriptional 
activation may help to better understand the progres-
sion towards drug resistance and identify combination 
therapies to overcome resistance. The ability of such mul-
tifaceted integrated approaches that include information 
from multiple data sources to unveil important biological 
insights have become apparent in recent years [11–14]. 
In the current study, we adapted an integrative network 
inference method, Passing Attributes between Networks 
for Data Assimilation (PANDA), to model the transcrip-
tion factor (TF) regulatory network in docetaxel sensitive 
and resistant PCa cell lines [15]. PANDA develops a regu-
latory model by iteratively integrating the information 
from TF-TF protein interaction, gene expression pro-
file and gene co-regulation, and TF-binding motif data. 
This method has been previously successfully adapted to 
study ovarian cancer [16] and breast cancer [17] through 
analysis of bulk samples. In the current study, we applied 
PANDA for the first time to single cell transcriptomes. 
Single cell RNA sequencing (scRNA-seq) uncovers the 
variability and heterogeneity of individual cells in a popu-
lation that cannot be appreciated using traditional bulk 
sequencing. This allows us to identify new information 
only observed through sequencing individual cells and 
provides a novel application of PANDA method to iden-
tify active networks in the development of docetaxel 
resistance.

In this study, we applied PANDA to characterize the 
TF regulatory network underlying development of doc-
etaxel resistance in docetaxel sensitive and resistant vari-
ants of the PC-3 and Du145 PCa cell lines. We conducted 
scRNA-seq on the sensitive and resistant variations of 
both cell lines. We identified shared network nodes and 
edges between the two cell lines. We also identified the 
TFs driving resistance and validated their importance in 
maintaining drug resistance. Furthermore, we subjected 
the networks to connectivity map analysis (CMAP) to 
identify candidate therapeutics to reverse docetaxel 
resistance in PCa. Based on the CMAP, we identified 
trichostatin A as a candidate therapy and then demon-
strated that TSA, in combination with docetaxel success-
fully decreased tumor growth in both in vitro and in vivo 
PCa models. This work provides valuable insight into a 
novel strategy using scRNA-seq to identify mechanisms 
of docetaxel resistance as well as candidate therapies to 
reverse drug resistance.

Materials and methods
Cell lines and reagents
DU145 (cat no. HTB-81) and PC3 (cat no. CRL-1435) 
were purchased from ATCC (Virginia, USA). The doc-
etaxel resistant strains were created as previously 
described [9]. All cells were cultured in RPMI 1640 (Inv-
itrogen Co., Carlsbad, CA) supplemented with 10% fetal 
bovine serum (FBS) and 1% penicillin-streptomycin (Life 
Technologies, Inc.). Resistance was maintained in the 
cells using growth media supplemented with 10 nM of 
docetaxel while sensitive cells were maintained with the 
addition of DMSO to a final level of 0.1% in the growth 
media (Cell Signaling Technology). Cell identification is 
confirmed annually using PCR for short tandem repeats.

Gene expression quantification
The single cell samples were previously sequenced and 
published by our group [10]. In brief, for 1  week, cells 
were transferred to docetaxel free media. Cells were 
trypsinized in 0.05% Trypsin EDTA for 5–10 min at 
37 °C and washed with media. For single cell sequenc-
ing, the cell suspension was loaded into in the Fluidigm 
C1™ machine and processed into single cell cDNA librar-
ies according to manufacturer protocol (PN 101–4981). 
Briefly, full length mRNA-seq libraries were generated 
from single cells captured using the Fluidigm C1™ Single 
Cell mRNA Seq IFC, 10-17 μm (PN 100–5760) and Flui-
digm C1™ Single-Cell Reagent Kit for mRNA Seq (PN 
100–6201). Each chip was visually inspected to identify 
which wells contained cells. Wells containing one cell 
were included in library preparation ad sequencing. The 
capture rate was between 78 and 96% across all chips 
used in this study. Full length cDNA was converted into 
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sequence ready libraries using SMART-seq v4 Ultra Low 
Input RNA kit for Fluidigm C1™ System (Takara Bio, 
Mountain View, CA, Cat 635,025) and SeqAmp™ DNA 
Polymerase (Takara Bio, Cat 638,504). Library prepara-
tion was completed using Nextera XT DNA library prep 
kit (Illumina, San Diego, CA, Cat. FC-131-1096) and 
Nextera XT DNA Library Prep Index Kit (Illumina, Cat 
FC-131-1002). Samples following PCR reactions as called 
for in each kit’s manufacturer’s protocol was purified 
using Agencourt AMPure XP (Beckman Coulter, Brea, 
CA, Item No A63880). Samples were sequenced on Illu-
mina HiSeq-2500 Rapid for DU145 cell line variants and 
Illumina HiSeq-4000 with single end option for PC3 cell 
line variants. Reads that were below the minimum quality 
controls were discarded. Each sample was aligned to the 
Human Genome hg38 [18] using bowtie alignment tool 
[19]. We captured a total of 324 cells across all cell lines. 
Poor quality cells were removed based on low number of 
reads as determined using the Fluidigm Singular pack-
age (https://​www.​fluid​igm.​com/​softw​are/). A total of 12 
cells were removed. 64 DU145 sensitive cells, 71 DU145 
resistant cells, 89 PC3 sensitive cells and 88 PC3 resist-
ant cells were included in all downstream analysis. To 
identify genes for downstream analysis, we used the Flui-
digm Singular package. Genes that were expressed in at 
less than 10 cells in each cell line were excluded. For the 
remaining genes, the lowest 15% of expressed genes were 
excluded. Lastly, genes need to be identified in all four 
cell line samples to be included in the final gene list. This 
resulted in 12,862 genes being included for all the subse-
quence downstream analyses. For gene expression analy-
sis, we followed the Seurat pipeline [20]. In brief, we used 
this pipeline to conduct dimensional reduction (includ-
ing PCA and tSNE) on all high-quality single cells using 
all 12,862 genes. Additionally, we estimated the cell cycle 
status of each cell using the suggested pipeline for the 
Seurat package. We used the cell cycle markers included 
in the Seurat package [21].

Constructing PANDA regulatory networks
PANDA [15, 22] uses three inputs: a motif prior, a set of 
known TF-TF interactions, and expression data. To cre-
ate each cell line specific transcriptional regulatory net-
works, we ran PANDA with the same TF motif prior data 
set and TF-TF interaction data, but with gene expres-
sion unique to each cell line. To create a motif prior data 
set, we downloaded the Homo Sapiens TF motifs from 
the Catalog of Inferred Sequencing Binding Preferences 
CIS-BP [23] for the 240 TFs included in the gene expres-
sion data sets. The TF position weight matrices were 
mapped to the promoter regions of all genes (defined as 
[− 750:+ 250] around the transcription start site for each 
gene) using FIMO [24]. To control the TF-TF interaction 

data set, we estimated the protein-protein interaction 
network between all 240 TFs using the interaction scores 
from StringDb v10.5 [25]. All data sources provided in 
StringDB were included when determining the initial 
interaction scores. The interaction scores were divided by 
1000 and self-interactions were set equal to one. For each 
network, we constructed a pairwise co-expression levels 
between each of the target genes (based on Pearson cor-
relation). PANDA then combined this information with 
the TF motif prior network and TF-TF interaction net-
work to produce each TF regulatory network.

Specificity score of edges
We identified the enriched edges as calculated in [22]. 
In brief: for the specificity score (s) of each edge in the 
regulatory networks, using all four networks, we first 
calculated the median and interquartile range (IQR) for 
each edge weight (w) between each TF (t) and gene (g). 
Next, we compared each individual edge weight (w) to 
its median and IQR to get the specificity score. An edge 
was defined as enriched to a network if s > N. N was 
determined by calculating the specificity scores for the 
individual genes (g) by comparing the median expres-
sion of the gene w(c)

g  in a particular cell line (c) to the 
median and IQR range of the networks constructed from 
either gene expression data sets. We then varied N from 
0 to 1. We selected the cut-off of N = 0.4 for the single 
cell sequenced cell lines since at those cut-offs half of all 
genes are identified as network enriched.

Node enrichment
To select the TF and gene node enrichment, we followed 
the method presented in [16, 22]. In brief, each TF was 
determined to connect with the number of enriched 
edges (as determined above) in each PANDA network. 
Using a hypergeometric distribution, we determined 
which networks targeted a higher number of enriched 
edges in either network. We calculated the edge weight 
change by calculating the average edge weight con-
nected to each TF and took the difference between the 
two PANDA networks. We selected “key” TF and gene 
nodes that had a p-value less than 0.05 in both the net-
work comparison of DU145 and network comparison of 
PC3. TF and gene nodes must also have both a positive 
or negative edge weight fold change in the comparison 
of DU145 and PC3 sensitive and resistant networks to be 
considered a “key” TF or gene node.

Gene set enrichment analysis
TF specificity score for each gene was determine using 
the specificity scores for each edge connected to the spe-
cific TF. Then Gene Set Enrichment Analysis (GSEA) was 
performed as previously described [22, 26]. In our study, 

https://www.fluidigm.com/software/
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we used the list of specific scores for each TF to run a 
pre-ranked GSEA [26] to test for enrichment of gene 
ontology terms. Highly significant enriched associations 
(FDR < 0.05) from these analyses were subjected to hier-
archical clustering to group the enriched gene sets into 
clusters. For each cluster, the frequency that each word 
appeared in the GO terms assigned to each cluster was 
determined and used to calculate its statistical enrich-
ment based on its hypergeometric probability. We then 
scaled the resulting p-values by –log10 so that the most 
statistically relevant words would appear the largest. We 
used the R package wordcloud2 to generate the resulting 
word clouds for each cluster.

Connectivity map analysis
We used the Connectivity Map data set (build01) con-
taining genome-wide expression data for 453 treatment 
and vehicle control pairs, representing 164 distinct small 
molecules (https://​porta​ls.​broad​insti​tute.​org/​cmap) [27]. 
Genes were marked as up- or down-regulated based on 
their average edge weight in the final TF network.

Drug response
DU145 and/or PC3 docetaxel-resistant cells were plated 
and cultured in 96-well plates for 16 h (2 × 103 cells/well). 
Cells were treated with TSA (15 nM; Sigma Aldrich, St. 
Louis, MO), kaempferol (0.2 μM; Sigma Aldrich), vori-
nostat (0.15 μM; Tocris, Avonmouth, Bristol) and/or 
docetaxel (10 nM, Cell Signaling Technology, Danvers, 
MA) or vehicle (PBS) for 48 h at which time WST-1 
solution (Roche Applied Science) was added to the cul-
ture medium and incubated for 2.5 h at 37 °C. Absorb-
ance was subsequently determined on a plate reader at a 
wavelength of 490 nm (Multi-Mode Microplate Reader, 
SpectraMax M5, Molecular Devices MDS Analytical 
Technologies).

Prostate cancer cell growth assay
The cells (3000/well) were seeded in 96-well plates (Corn-
ing, New York, NY, USA) in triplicates for 24 h and then 
the cells were treated with different concentrations of the 
indicated Trichostatin A (Sigma Chemical Co., St. Louis, 
MO). The cells were cultured for 3 days. The number of 
viable cells was measured by Cell Proliferation Reagent 
WST-1 (Roche Applied Science) as directed by the man-
ufacturer. IC50, the concentration that caused 50% inhi-
bition of cell growth, was calculated with software from 
AAT Bioquest, Inc. (https://​www.​aatbio.​com/​tools/​ic50-​
calcu​lator).

Mouse experiments
The mouse experiments were approved by the University 
of Michigan Institutional Animal Care & Use Committee 

under Protocol 10,366. Docetaxel-resistant PC3 cells in 
PBS + 50% matrigel GFR (Corning, Corning, New York) 
were injected subcutaneously into 60 SCID mice (male, 
6 to 9 weeks old, mice sourced from the Unit for Labora-
tory Animal Mice Breeding Colony Managers at Univer-
sity of Michigan (ULAM-BCM) with approval from them 
for our experiments) at 106 cells per right flank. During 
experiment, when specified in the approved protocol, 
mice were anesthetized with isoflurane inhalation at 
2.5 mg/kg. Tumor growth was monitored using calipers 
to measure the length (L) and width (W) and tumor vol-
ume was calculated using the formula π/6 x W2 x L. On 
Day 15 post-injection when average tumor volume was 
100mm3, mice were randomly assigned to one of 4 treat-
ment groups: vehicle 5% DMSO (n = 13), 5 mg/kg doc-
etaxel (n = 13), 1.5 mg/kg TSA (Sigma, St. Louis, MO), 
or combination 5 mg/kg docetaxel and 1.5 mg/kg TSA 
treatment (n = 13). Docetaxel was injected intraperito-
neally (IP) weekly in the docetaxel alone and combina-
tion groups. TSA was injected IP three times per week 
on Monday, Wednesday and Friday to the TSA alone and 
TSA-docetaxel Combo group. At the end of experiment, 
all mice were euthanatized with CO2 inhalation and cer-
vical dislocation as secondary method.

Statistical analysis
For animal experiments, power calculations were per-
formed using Gpower 3.1.9.7 [28]. For a power of 90% 
and an effect size of 55% with p < 0.05, 13 animals per 
group were required. Statistical comparison among 
groups were calculated using a mixed-effects analysis for 
tumor growth over time and a one-way ANOVA followed 
by Tukey’s Honest Significant Difference for difference in 
tumor weight. Statistical significance was determined as 
p ≤ 0.05.

Results
Identifying network enriched edges
We initially conducted single cell RNA-sequencing on 
two PCa cell lines, DU145 and PC3, that had been pre-
viously created to be resistant to docetaxel treatment 
[9]. We sequenced both the parental (i.e. docetaxel-sen-
sitive) and docetaxel-resistant variants from both cell 
lines resulting in a total 312 individual sequenced cells 
(64 DU145 sensitive cells, 71 DU145 resistant cells, 89 
PC3 sensitive cells and 88 PC3 resistant cells). To con-
struct TF activity networks for each of the four estab-
lished cell lines, we used the PANDA algorithm [15]. 
PANDA integrates the gene-gene co-expression infor-
mation from each of the four established cell lines with 
an initial regulatory network consisting of 240 TF as 
well as known TF-TF interactions and TF-Gene interac-
tions [25]. This resulted in 4 reconstructed TF regulatory 

https://portals.broadinstitute.org/cmap
https://www.aatbio.com/tools/ic50-calculator
https://www.aatbio.com/tools/ic50-calculator
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networks (Fig.  1A). We visualized the heterogeneity of 
all 312 cells and observed that the majority of cells clus-
tered based primarily on their cell line identity (Fig.  1B 
and Supplementary Fig. S1). We did see a change in the 
cell cycle phase between the sensitive and resistant cell 
lines (Supplementary Table  S1). We observed an over 

two-fold decrease in S and G2M phase cells in the resist-
ant compared to sensitive cells from both lines. However, 
the G1 phase cells increased by over two and half fold in 
the resistant cells compared to the sensitive cells (Sup-
plementary Table  S1). This does suggest a shift in cell 
cycle stage following docetaxel resistance in PCa cells. To 

Fig. 1  Detailed Workflow of Study. A Gene expression data from each scRNA-seq of each cell was combined with physical protein-protein 
interactions and predicted TF-gene targets to build individual network models. The models from each cell line were compared to identify 
differences. Shared differences between the DU145 models and PC3 models were combined to create a general model of docetaxel drug 
resistance. For representation: circles denote TF, squares denote a gene. In the combined network: grey denotes the node or edge is not 
significantly altered between the sensitive and resistant cells, a green edge or node is statistically significant. B tSNE of all single cells analyzed
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determine which edges and nodes were enriched in the 
sensitive and resistant DU145 or PC3 networks, we first 
calculated the interquartile range (IQR) cut-off in which 
half of the nodes (based on gene expression) would be 
labeled as network enriched as previously described [22]. 
We determined this value to be a cut-off of 0.4 (Fig. 2A-
B). 3,022,871 edges (89.7%) were enriched in at least one 
network (Fig.  2B). Of those, only 375,639 edges were 
enriched for two networks (Fig.  2C). The observation 
that only 11.1% of the edges overlap between any two 
networks, indicates that these edges primarily illustrate 
cell line enriched regulatory interactions across each 
condition.

Identifying cell line specific nodes
To determine which TF and gene nodes differed 
between the sensitive and resistant DU145 or PC3 net-
works, we compared the ‘in-degree’ of each node as 
defined as the sum of all edge weights connected to a 
particular node for each network. We calculated the 

probability for node statistical significance between the 
two DU145 or PC3 networks by comparing the number 
of enriched edges targeted by each node in either net-
work [16]. Of the 240 included TFs, 63 had a p-value 
< 0.05 in both cell line network comparisons (Fig.  3A 
and Supplementary Table  S2). Additionally, we cal-
culated the edge weight fold change based on the ‘in 
degree’ value for each node. For the 63 TFs, not all had 
the same fold change direction change for both com-
parisons. Only 10 of the TFs had an in-degree in the 
same direction (Fig. 3B).

We also determined which gene nodes were altered 
in the TF regulatory networks using the ‘in degree’ 
values calculated for each gene node. Of the 12,862 
genes included in the original gene expression data 
sets, 210 gene nodes had a p-value < 0.05 in both cell 
line network comparisons (Fig. 4A and Supplementary 
Table S3). 118 gene nodes had a fold change direction 
that was the same between the DU145 and PC3 net-
work comparisons (Fig. 4B).

Fig. 2  Identification of cell line network enriched edges. A Number of genes of a given multiplicity at various cut-offs. B Number of network 
enriched edges in each cell line at a cut-off of 0.4. C Venn Diagram of cell line enriched edges
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Regulation of functional pathways
To ensure the final network was not representative of 
just one PCa cell line and to provide robust results, we 
constructed a final combined TF activity network. This 
network only includes the common edges and nodes 

identified in Figs.  2, 3 and 4. Thus, the final TF activ-
ity network represents a generalized prostate cancer 
response to docetaxel treatment (Fig. 5A). In this visuali-
zation, the 10 TFs were connected to the 118 gene nodes 
by lines colored based on whether they exhibit higher 

Fig. 3  TF nodes altered in both cell line models. A p values of each TF from network comparison of sensitive and resistant cells lines. Black – not 
statistically significant, blue – significant only in DU145 network comparison, green – significant only in PC3 network comparison, red – significant 
in both cell line network comparisons. B Heatmap of TFs that were significant in both cell line network comparisons
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average edge weight in the sensitive (red) or resistant 
(blue) regulatory networks. To explore the functional 
pathways altered in the regulatory network, we ran gene 
set enrichment analysis (GSEA) on the TF specific tar-
geted genes to identify four clusters of groups of GO 
terms (Fig.  5B and Supplementary Table  S4). We used 
word clouds to summarize the GO terms for each cluster 

to provide a snapshot of the functions (Fig.  5C). These 
clusters often include sets of highly related functions. 
Cluster 1 contains GO terms related to the cytoskeleton, 
chromatin and cellular division suggesting these terms 
regulate cellular proliferation. In cluster 2, we observe 
GO terms related to metal ions, signaling molecules 
and binding suggesting these GO terms regulate cellular 

Fig. 4  Identification of gene nodes altered in both cell line network models. A p values of each gene from network comparison of sensitive 
and resistant cells lines. Black – not statistically significant, blue – significant only in DU145 network comparison, green – significant only in PC3 
network comparison, red – significant in both cell line network comparisons. B Heatmap of genes that were significant in both cell line network 
comparisons
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Fig. 5  Combined network drive gene pathway changes. A Combined network from both cell line comparisons. Edges included were identified 
in Fig. 2 and connected TF node identified in Fig. 3 and a gene node identified in Fig. 4. B Heatmap of gene set enrichment analysis of the 
sub-network connected to indicated TF. C Word cloud of gene ontology names identified in each cluster from (B)
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signaling. Cluster 3 is the smallest of all the clusters and 
contains words such as cellular process, envelope, and 
RNA. This is suggesting this cluster regulates cellular 
response to signaling but not through any specific mech-
anism like in cluster 2. Cluster 4 contains words such as 
metabolic and catabolic suggesting this cluster contains 
GO terms relating to cellular metabolism Additionally, 
cluster 1 is enriched by different TFs in the resistant or 
sensitive cell lines. This may suggest the importance of 
these pathways regardless of cellular drug sensitivity. In 
cluster 4, the majority of enrichment was higher in the 
sensitive cell lines when targeted by the TFs. These data 
suggest the functional pathway changes that occur during 
docetaxel resistance due to changes in TF activity.

Drug combination therapy for drug resistant PCa
To identify potential alternative clinical therapeutic 
opportunities in our PCa TF network, we investigated 
drugs that would potentially disrupt the combined TF 
regulatory network. To perform this, we labeled the 118 
gene nodes as sensitive or resistant nodes based on their 
edge weight fold change (Fig. 2B). Using this list, we used 
Connectivity Map (CMAP) analysis to predict drugs that 
would up-regulate the sensitive genes nodes and down-
regulate the resistant gene nodes. The drugs with positive 
enrichment would be those with the highest potential to 
reverse docetaxel resistance in PCa. We examined the 
top hits from CMAP using the final combined regulatory 
network and identified four potential drugs: vorinostat, 
GW-8510, kaempferol, and trichostatin A (Fig.  6A and 
Supplementary Table S5). To investigate these drugs, we 
tested their ability to overcome docetaxel resistance in 
the two PCa cell lines. However, we could not evaluate 
GW-8510 as we were not able to procure it. After deter-
mining the IC50 dosage for the remaining three drugs 
(Supplementary Fig.  S2), we found that neither kaemp-
ferol nor vorinostat had a significant impact on docetaxel 
resistance in the PCa cells (Supplementary Fig. S3). How-
ever, the combination of trichostatin A and docetaxel sta-
tistically significantly decreased the cellular proliferation 
of both cell lines compared to the vehicle (Fig.  6B-C). 
Additionally, the IC50 of docetaxel decreased signifi-
cantly when the same cells were treated with trichostatin 
A indicating that TSA decreased resistance to docetaxel 
(Fig.  6D-E). We further tested the combination treat-
ment of trichostatin A and docetaxel in a mouse model of 
PCa. We established subcutaneous tumors of PC3 resist-
ant cells in mice and then treated the mice with vehicle, 
docetaxel alone, TSA alone, or the combination of doc-
etaxel and TSA for 13 days. While neither drug alone 
impacted tumor growth, the combination of TSA and 
docetaxel decreased tumor growth as measured by both 
tumor volume (Fig.  7A, p-value < 0.05) and final tumor 

weight (Fig.  7B, p-value < 0.05) compared to the three 
other groups. These data suggest trichostatin A is able to 
reverse docetaxel resistance in PCa cells in both in vitro 
and in vivo models.

Discussion
In this study, we conducted a single cell-based TF net-
work analysis of docetaxel resistance in PCa. We mod-
eled the TF regulatory networks in docetaxel sensitive 
and resistant PC3 and DU145 PCa cell lines. The final 
network identified 10 TFs that were the main nodes for 
the regulatory network. This suggests these TFs are criti-
cal for the development of docetaxel resistance in PCa. 
Furthermore, the gene nodes from the network analy-
sis were subjected to CMAP which suggested that TSA 
could reverse docetaxel resistant. These findings were 
validated through use of both in vitro and in vivo mod-
els that demonstrated TSA reverses docetaxel resistance. 
In cell lines, the combination of TSA and docetaxel sig-
nificantly reduced both the number of viable docetaxel 
resistant PCa cells and the IC50 value for those resistant 
cells (Fig. 6). In the PCa mouse model, the combination 
of TSA and docetaxel reduced tumor growth and final 
tumor weight greater than either drug alone (Fig.  7). 
Taken together, these finding demonstrate the validity of 
this novel methodology of applying network analysis to 
single cell transcriptomic data to analyze mechanisms of 
therapeutic resistance and highlights a specific drug that 
can be tested as a candidate to overcome docetaxel resist-
ance in patients.

The combination of both scRNA-seq and network 
analysis has enabled the investigation into the TF activ-
ity underlying PCa docetaxel resistance. TF activity is 
regulated beyond the expression level through post-
translational modifications including acetylation [29], 
ubiquitination [30], and sumoylation [31] among others. 
The application of network analysis, allows for investi-
gation of TF activity beyond just TF gene expression. 
PANDA of bulk mRNA was previously used to iden-
tify the TF co-regulation that existed in triple-negative 
breast cancer [17] as well as potential biomarkers for 
anti-angiogenesis treatment in ovarian cancer [16]. In 
our study, PANDA allowed for determining TF activity 
networks that identified novel targets for PCa resistance. 
Our analysis also identified different patterns of TF tar-
geted pathway activation in our GSEA analysis and in the 
word cloud representation. The word cloud representa-
tion identified very high-level terms suggesting that the 
development of docetaxel resistance impacts very basic 
cell function. For instance, in cluster 1, a group of gene 
pathways involved in cytoskeleton and cellular division, 
we observe one set of TFs driving those pathways. How-
ever, in the resistant network, a different set of TFs drive 
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Fig. 6  Trichostatin A decreases the resistance to docetaxel. A Drugs significantly associated with combined network based on CMAP analysis. B Cell 
viability of PC3 resistant cell line after treatment with docetaxel and trichostatin A. C Cell viability of DU145 resistant cell line after treatment with 
docetaxel and trichostatin A. D IC50 of docetaxel of PC3 resistant cell line after treatment with vehicle or trichostatin a. E IC50 of docetaxel of DU145 
resistant cell line after treatment with vehicle or trichostatin a
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these pathways. This suggests a TF shift from CTCF, 
GABPA and ELK4 to AFT4, E2F5, and LHX6 among 
other TFs during drug resistance. Additional study would 
be needed to explore this TF activity shift.

In our analysis, 10 TFs were identified to be of some 
statistical significance to either the sensitive or resistant 
networks. Some of these TFs have been implicated in 
tumor development or drug resistance in previous stud-
ies. CUX1, identified in the sensitive network, is a tumor 
suppressor and it’s lose promotes tumorigenesis [32]. In 
PCa, the loss of CUX1 reduces the level of cellular senes-
cence in tumor cells [33]. Combined with our data that 
suggests a loss of CUX1 activity in resistance cells, CUX1 
may play a role in docetaxel resistance in PCa. However, 
there are multiple TFs with higher activity in the resist-
ant networks such as GABPA, NFYB, and NRF1 among 
others. GABPA is a downstream target of the androgen 
receptor in PCa and enables the tumor cells to become 
more aggressive [34]. NFYB drives paclitaxel resistance in 
breast cancer [35] and oxalipatin resistance in colorectal 
cancer [36]. NRF family can been observed to drive cis-
platin resistance in pancreatic cancer [37, 38]. Together, 
this provides evidence that these TFs can drive drug 
resistance or aggressiveness in tumor cells. And in con-
junction with our analyses, could play a role in docetaxel 
resistance in PCa. However, additional research would be 
needed to confirm this role.

Applying CMAP to our PANDA network analyses 
enabled identification of candidate drugs, such as TSA.
TSA is a reversible histone deacetylase inhibitor [39] 
that has been previously shown to be a promising new 

treatment for other cancers. In osteosarcoma cells, 
TSA induced cancer cell apoptosis through both his-
tone acetylation- and mitochondria-dependent mecha-
nisms [40]. Interestingly, TSA had a greater specificity 
in affecting cancer cells compared to normal cells than 
other histone deacetylase inhibitors [41]. This pro-
cancer selectivity makes TSA an attractive therapeutic 
agent in a clinical setting. Furthermore, TSA enhanced 
the anti-tumor effects of docetaxel in lung cancer [42]. 
It was demonstrated that that TSA in combination with 
docetaxel reduced lung cancer cells by promoting apop-
tosis. While further work is necessary to determine if 
a similar mechanism was involved with TSA and doc-
etaxel in PCa, our findings suggest that TSA could 
overcome docetaxel resistance in PCa cells in patients.

Next generation sequencing is currently used in the 
clinic to aid in determining potential therapies, such 
as the identification of mutations or gene fusions, in a 
precision medicine approach [43, 44]. However, these 
studies do not identify intra-patient heterogeneity, 
which plays a role in a patient’s therapeutic response 
[45, 46]. The addition of single cell sequencing allows 
for the study of heterogeneity in each patient which 
could improve a precision medicine approach. Using 
the analysis pipeline presented in this study, it is pos-
sible to identify TF drivers and off-target drug treat-
ments that disrupt individual sub-populations of cells 
in an individual patient. Further research is needed to 
determine which sub-populations drive patient treat-
ment responses in order to target the proper sub-pop-
ulations. Ultimately, this will allow for a personalized 
therapeutic approach for patients that do not respond 
to or become resistant to conventional therapies.

Fig. 7  Combination of Trichostatin A and Docetaxel Reduces Tumor Growth in Vivo. A Tumor growth of PC3 resistant cell line in mouse model after 
indicated treatment. B Tumor Weight of PC3 resistant cell line in mouse model after indicated treatment
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Conclusion
Overcoming drug resistance is critical to improving patient 
survival in PCa. In this study, we identified a TF activ-
ity network  common to two different PCa cell lines that 
drives docetaxel resistance in PCa. We also demonstrated 
a novel combination therapy to overcome this resistance. 
This study highlights the usage of novel application of sin-
gle cell RNA-sequencing and subsequent network analyses 
that can reveal novel insights which have the potential to 
improve clinical outcomes.
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